Mitochondrial uncoupling protein-2 is not involved in palmitate-induced impairment of glucose-stimulated insulin secretion in INS-1E insulinoma cells and is not needed for the amplification of insulin release

نویسندگان

  • Verena Hirschberg Jensen
  • Charles Affourtit
چکیده

We have recently shown that overnight exposure of INS-1E insulinoma cells to palmitate in the presence of high glucose causes defects in both mitochondrial energy metabolism and glucose-stimulated insulin secretion (GSIS). Here we report experiments designed to test the involvement of mitochondrial uncoupling protein-2 (UCP2) in these glucolipotoxic effects. Measuring real-time oxygen consumption in siRNA-transfected INS-1E cells, we show that deleterious effects of palmitate on the glucose sensitivity of mitochondrial respiration and on the coupling efficiency of oxidative phosphorylation are independent of UCP2. Consistently, palmitate impairs GSIS to the same extent in cells with and without UCP2. Furthermore, we knocked down UCP2 in spheroid INS-1E cell clusters (pseudoislets) to test whether or not UCP2 regulates insulin secretion during prolonged glucose exposure. We demonstrate that there are no differences in temporal GSIS kinetics between perifused pseudoislets with and without UCP2. We conclude that UCP2 is not involved in palmitate-induced impairment of GSIS in INS-1E insulinoma cells and is not needed for the amplification of insulin release. These conclusions inform ongoing debate on the disputed biochemical and physiological functions of the beta cell UCP2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species

Glucose-stimulated insulin secretion (GSIS) by pancreatic β cells is regulated by mitochondrial uncoupling protein-2 (UCP2), but opposing phenotypes, GSIS improvement and impairment, have been reported for different Ucp2-ablated mouse models. By measuring mitochondrial bioenergetics in attached INS-1E insulinoma cells with and without UCP2, we show that UCP2 contributes to proton leak and atten...

متن کامل

Novel insights into pancreatic β-cell glucolipotoxicity from real-time functional analysis of mitochondrial energy metabolism in INS-1E insulinoma cells.

High circulating glucose and non-esterified (free) fatty acid levels can cause pancreatic β-cell failure. The molecular mechanisms of this β-cell glucolipotoxicity are yet to be established conclusively. In the present paper we report on the involvement of mitochondrial dysfunction in fatty-acid-induced β-cell failure. We have used state-of-the-art extracellular flux technology to functionally ...

متن کامل

Mitochondrial uncoupling protein UCP2 in synergy with calcium-independent phospholipase A2γ protect INS-1E β-cells against acute palmitate-induced toxicity

not affect glucose-stimulated insulin secretion (GSIS) and does not protect against the harmful effects of palmitate. We have shown that palmitateinduced GSIS impairment is linked to attenuation of glucose sensitivity of mitochondrial respiration and dampening of the coupling efficiency of glucose-stimulatedoxidative phosphorylation [1]. Since these bioenergetic parameters are affected similarl...

متن کامل

Uncoupling protein-2 contributes significantly to high mitochondrial proton leak in INS-1E insulinoma cells and attenuates glucose-stimulated insulin secretion.

Proton leak exerts stronger control over ATP/ADP in mitochondria from clonal pancreatic beta-cells (INS-1E) than in those from rat skeletal muscle, due to the higher proton conductance of INS-1E mitochondria [Affourtit and Brand (2006) Biochem. J. 393, 151-159]. In the present study, we demonstrate that high proton leak manifests itself at the cellular level too: the leak rate (measured as myxo...

متن کامل

Uncoupling protein-2 attenuates palmitoleate protection against the cytotoxic production of mitochondrial reactive oxygen species in INS-1E insulinoma cells

High glucose and fatty acid levels impair pancreatic beta cell function. We have recently shown that palmitate-induced loss of INS-1E insulinoma cells is related to increased reactive oxygen species (ROS) production as both toxic effects are prevented by palmitoleate. Here we show that palmitate-induced ROS are mostly mitochondrial: oxidation of MitoSOX, a mitochondria-targeted superoxide probe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2015